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ABSTRACT

This volume is the documentation of the theoretical development of the
forced steady state analysis of the structural dynamic response of a turbine
engine having nonlinear connecting elements. Based on modal synthesis, and the
principle of harmonic balance, the governing relations are the compatibility of
displacements at the nonlinear connecting elements. There are four
displacement compatibility equations at each nonlinear connection, which are
solved by iteration for the principal harmonic of the excitation frequency.

The resulting computer program, TETRA 2, combines the original TETRA
transient analysis (with flexible bladed disk) with the steady state
capability. A more versatile nonlinear rub or bearing element which contains a
hardening (or softening) spring, with or without deadband, is also
incorporated.



1.0 SUMMARY

The NASA-Lewis Blade Loss program which was originally written for the
calculation of transient response of turbine engine structures, has been
extended to predict steady state vibratory response. The original name of
TETRA (Turbine Engine Transient Response Analysis) has been kept, but slightly
modified to TETRA 2. This new program can be used to calculate transient and
forced steady state responses. The 'transient' capability is based on the
latest version of TETRA and includes the subsequent additions of:

1) Flexible Bladed Disk module
2) Squeeze Film Bearing Module

The 'steady state' capability includes the original modules with the
exception of the squeeze film module. However, the original rub element has
been generalized to allow either dead-band or no dead-band, and the rub spring
characteristics is a hardening spring and/or a linear spring.

Inputs for transient and steady state are the same except for the obvious
differences:

Transient requires 'time-sweep' inputs
Steady state requires 'frequency-sweep' inputs.

The basic theoretical approach for the steady state capability requires the
formation of a global matrix equation in terms of the generalized coordinates
and nonlinear physical forces. Solution is by harmonic balance and iteration
of physical displacements at the nonlinear connecting elements. This solution
yields only the first harmonic of the forcing frequency.



2.0 INTRODUCTION

In the NASA-Lewis sponsored Turbine Engine Transient Analysis program
(TETRA), a computational tool was developed to predict the transient dynamic
response of engineering structures to suddenly applied loads, such as from
the loss of a blade (1)*. The capability of this program was further enhance
by the addition of two modules: 1) Flexible Bladed Disk (2), and 2) Squeeze
Film Bearing (3). The latter was added by Case Western Reserve University
under NASA-Lewis sponsorship.

The fundamental techmnical approach is the method of model synthesis (4),
wherein the dynamic response of a complex structure is constructed in terms
of the natural modes of its principal structural components. The possible
breakdown of a turbine engine into its main components is shown in Figure
1-1. The equations of motion in the modal generalized coordinates are solved
numerically by central difference integration in the time domain. This
solution has the flexibility to accommodate nonlinearities, such as tip
rubs, squeeze films or other nonlinear bearings or connecting elements. Also
the gyroscopic coupling between motions in the vertical and horizontal planes
of rotating structures is considered for rigid as well as flexible bladed
disks. Applications of the TETRA are found in References 1, 2 and 5.

The transient response of a structure is a history of the motion and
loads which initially vary non-uniformly in time until a steady state condi-
tion is reached. Where damping is low and modal frequencies high, the time
steps required to reach steady state can be considerable, for this reason a
more direct method to calculated steady state response was undertaken.

Steady state capability allows the calculations of forced response
amplitudes as function of excitation frequency so that engine response from a
sinusoidal input, such as unbalance, can be obtained over the engine
operating speed range. For purely linear systems, the methodology is well
established.

However, in the presence of nonlinearities, obtaining the steady state
solution is neither simple nor straight-forward. This is especially true
with large systems of equations with strong nonlinearities. To date, there
is no mathematical method to solve the general nonlinear differential
equations, (6), (7) and (8).

Numbers in parentheses indicate references.
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To produce a more pragmatic solution to this complex and important problem,
the solution is limited to the first harmonic of the forcing frequency.
Solution by iteration of the compatibility conditions at only the nonlinear
connecting elements results in a dramatic reduction in the number of equations
- to be solved. The method of harmonic .balance, due to Kryloff and Bogoliuboff
(9), was used to transform the nonlinear differential equations to a system of
nonlinear connections.

This methodology was implemented in a computer code built on the original
TETRA program. The new program, TETRA 2, has the capability of the original
transient analysis as well as the steady state solution. To make the TETRA 2
user friendly, the inputs of the original TETRA has been kept unchanged as much
as possible. The only major addition lies in the description of the
'time-sweep' of the transient analysis and the 'frequency-sweep' of the steady
state. The basic description of the structural subsystems and their modal
data, the concatenation or assemblage of the subsystems and the connecting
elements are essentially the same.

This final report is the documentation of the development of TETRA 2, in
particular, the steady state capability. This report consists of two volumes:
1) theory, and 2) user's manual. The latter includes the entire input
sheets for the TETRA 2 code: transient and steady state, as well as sample
cases, and comparisons of results made for the original two subsystem
demonstration cases.

With the NASA sponsored TETRA 2 computer code, industry is presented a
comprehensive turbine engine rotor dynamics computer code that can be used
for the calculation of both transient and steady state responses. The nonlinear
capability of the program greatly enhances and broadens its application to more
realistic analysis of real engines.

The authors wish to acknowledge the technical help provided by their
colleagues. Dr. J. K. Casey contributed his mathematical expertise in the
computational strategy employed in the program, while M. J. Stallone provided
overall technical guidance, especially insisting in making TETRA 2 inputs and
outputs as similar as possible to the original transient version. Also, we
recognize A. Storace for contribution in the overall program and R. Holt for
writing the model program that checked out TETRA 2. Finally, to Jeanette Sturgill
for a very meticulous and neat typing of the working equations; many thanks.

To our colleagues at NASA-Lewis, thanks to Gerry Brown who managed the
original TETRA and Bob Kielb who succeeded him in TETRA 2 and Chuck Lawrence,
NASA-Lewis' monitor for the program. We would like to recognize the thorough
‘critical evaluations that the first project monitor of the NASA Blade Loss
Program, Ming Tang, has made to TETRA and for the subsequent definition of the
early stages of TETRA 2. He has since passed away last year. His thoroughness
in reviewing the technical documentations of the Blade Loss Program as well as
the very cogent constructive criticisms he provided, have proven invaluable.



3.0 PART I: ANALYTICAL DEVELOPMENT

3.1 Technical Approach to Steady State Response Analysis

The steady state response of systems with nonlinearities is a relatively
undeveloped field unlike purely linear systems. Nonlinear differential
equations have many possible solutions, each being highly sensitive to initial
conditions, external forces and system parameters. For instance, in the case
of Duffing’s or van der Pol’s equation, grossly different solutions are
produced by changes in initial conditions or force amplitudes. One initial
condition may result in periodic solutions; another may result in aperiodic
solutions; still others may yield jumps or bi-stable solutions, 1limit cycles,
and subharmonic and superharmonic oscillations.

When one considers a complex turbine engine with many degrees of freedom
and several nonlinearities, the problem of finding general steady state
solutions is considerable. In most cases, only approximate solutions with
narrow constraints are practicable. In the present work, a pragmatic
philosophy is employed which will limit solutions to the first harmonic of the
excitation frequency and simple harmonic oscillations with constant amplitude.
This is justified from most engine experience, where engine response is
essentially in the excitation frequency.

The use of modal synthesis on a large system also limits nonlinearities to
inter-subsystem connecting elements, such that the deflection of a structural
subsystem can be represented by a superposition of its normal modes. The
nonlinear connecting forces are written as function of the relative physical
displacements between the joined components and are treated as quasi-external
forces. By multiplying these connecting physical forces by the appropriate
modal displacements, the global equations in the generalized modal coordinates
of the complete assembled structure are obtained.

The left-hand side of the global matrix differential equation contain the
linear part which are proportional to the generalized coordinates. On the
right-hand side are the generalized forces which are functions of time in the
case of external forces, and the nonlinear connecting forces which are
explicit functions of the relative physical displacements.

Employing the principles of 'harmonic averaging' or 'harmonic balance' due
to Kryloff and Bogoliuboff (9,10) and slowly varying functions (10), the
differential equations are transformed to nonlinear algebraic equations. After
solving explicitly (by inversion) for the generalized coordinates, the relative
physical displacements at the nonlinear connections are obtained by modal
superposition. These last equations relate the vector of relative physical
displacements at the nonlinear connections on the left-hand side to the
external and nonlinear connecting physical forces (in terms of relative
physical displacements) on the right-hand side. Thus, the equations to be
solved are reduced from twice the number of generalized coordinates to just
fogr times the number of nonlinear connecting elements, which is a considerable
reduction.



Numerical solution by iteration of these compatibility relations is made
with existing computer subroutines such as those in the IMSL library.

The following sub-sections delineate the technical approach described here,
in more technical details.

3.1.1 Generalized Global Equations of Structural Systems With Nonlinear
Connecting Elements

Following the method of modal synthesis, the global equations of
motion of a system of inter-connected elastic bodies were derived in
Reference 1,2, and 4. Those obtained in (1) and (2) were solved in
the transient TETRA and are the same ones solved in TETRA 2. To
illustrate the basic concept of the method employed in the steady
state analysis, the denotation of each structural component and
plane(s) (horizontal and vertical planes) will be omitted for
simplicity. A very detailed development of the working equations
actually programmed, is presented in a later section.

Conceptually, the equations of motion of the fully coupled and
assembled system are written in tensor (or matrix) notation. The
dependent variables, q;(t) are the generalized modal coordinates of
the component structures Since each component structure’s normal
modes are obtained with free-free boundary conditions, these satisfy
orthogonality only within the individual structures, such that
coupling forces between substructures and their normal modes exist.
In short, the matrices of the coefficients of the generalized modal
coordinates are not diagonal, but in general, full matrices.

The generalized nonlinear connecting forces are functions of the
relative physical displacements between the joined structures at the
connected points. Though these displacements belong to a subset of
the physical displacements of the substructures, these ’connection’
displacements are not expressed in terms of normal modes. Thus, the
nonlinear connecting forces are always in terms of the relative
physical displacements.

From (1) and (2), the global equations of motion in the
generalized coordinates are given in tensor form as:

q 2 n 1q.=F.(+ HAX™
Mga;+ {“’UM 3 Kij]qj + [Z(ij“’ijM T % c;+ QGU}qJ O+ H,
n



Where:

M; ;

modal mass matrix (non-diagonal with the flexible bladed disk
module)

®;; = modal natural frequencies, diagonal matrix

q..

y

modal critical damping ratio
Gij= gyro coupling - skew symmetric matrix
n = axial location of linear connecting element

Kijn = generalized linear connecting spring matrix, summed over
the 'n’ linear connections

Cijn=genera1ized Tinear damping matrix associated with Kijn
F;(t)- generalized external force - sinusoidal

H (Ax™ = modal nonlinear connecting forces at m locations.
i Summed over m locations.

AxX™ = Relative physical displacement at the nonlinear connecting
element with axial Tocation m.

The generalized nonlinear connecting forces are given as a
hardening spring with viscous damping, and written in terms of the
physical displacements. For example, one nonlinear spring force at
point 'm’ is given as a physical force:

F™ = —K™1 + p™AX™AX™ - C"aX™

Where: KM= the linear part of the spring
K= the nonlinear factor
XM= the relative physical displacement at location ‘m
CM= viscous damping coefficient of the connecting element.
The generalized nonlinear connecting force on a subsystem at

point ’m’ is simply the product of the physical forc%th times the
subsystem’s modal displacement at point ’m’ in the i*" mode; thus:

i

o8 = o [k[s w1 cmai
Where:

¢:" = i** mode displacement at point'm'



When there is more than one nonlinear connection, the physical
connecting forces are multiplied by the modal displacements at th%gr
locations and summed over those locations - for each mode. The i
generalized nonlinear connecting force is therefore:

H==) o"F"=_5 (D:"{k"'(l +pm[Axm]2>] - > orcmaxm
m m m

The global generalized equations may therefore be rewritten:
oo 2 n ‘ .
w=Md+ {(o Myt > KZ.} q,+ [2m(ij)Z“.j)Mij + % Ct + QGU}qJ
n .

-F - ¢:"K"'I1 + p"'[AXmlz}AXm -> q);"c"'A)'("' =0

3.1.2 Transformation by Harmonic Balance and the Compatibjlity Relations

The global generalized differential equations are nonlinear in the
physical displacements at the nonlinear connecting elements. To obtain
forced solutions synchronous with the excitation frequency, an
assumption of slowly varying function is made. This assumes that the
principal motion is harmonic with constant amplitude, so that the
ensuing generalized - and physical - displacements, may be written in

the form: _
q () = a.coswt + b sinwt
[ t 1]
X™t) = A™coswt + B™sinwt
with é=h=Am=ém=%=E=2m=§m=0

The next step is to employ the principle of harmonic balance
(9,10,11) by means of which the "N" differential equations are
transformed to "2N" nonlinear algebraic equations.*

The transformation is made as follows: Substitute the harmonic form
of the displacements into the N global generalized differential
equations; multiply each equation by ‘coswt dt’ and integrate from 0

to 2m/@ ; repeat the last step but multiply with ‘Sinwtdt’ and
integrate as before.

Recalling that each global generalized equation is identified as:

¥, = 0, the transformation becomes:
;C 2n/w
‘= wla b A™B™ wt.. )| 5“t ) dt =0
-8 0 t [ 2R3 sinwt
¥}
Where: Wf = cosine transformation

¥, = sine transformation

*2N, when motions are in only one plane; 4N when motions are in 2 planes.



The following integral transformations, which are inferred from the
terms of the global generalized differential equations, are required:

2n/e) 2
@ q (coswt di = —ee
o =g i\ sinwt -—mzbi
2n/w
2 * coswi dt = mbi
n Ji=g qi sinwt -mai
2n/w
_(‘_) coswt - a‘.
9\ sinwt dt = b
n t=0 Y i
2n/w .
@ J Xm(cqsm:> dt = (Am)
n =0 stnw Bm
/e,
ol I Xm(cqswt>dt=<m8m >
P t=0 stnwt —mAm

e

2n/ g m m. 2 m2
]nm[xm]3(cosmt>dt=(4A [(A ) +1(B )]\

- stnwt 3
=0 ‘ZBm[<Am)2+ (Bm)zJ

Where:

q; = a coswt + b sinwt

X™ = A™coswt + BMsinwt

10



With these transformations, the differential equations become
algebraic equations. Thus,

it 12N

P I R

Where: AAij’ AB;i, BA;j;, BB;; are the coefficients of
the ggnerai?zed cgordinates

F = cosine transformation of the external general force
F} = Sine transformation of the external general force

Eﬁ = Cosine transformation of the nonlinear connecting force, a
function of the A™, B™ components at all nonlinear connecting
elements. This may be a polynomial in AM, BM of the form:

(. (. (o

Where m:1,2,.M

H = Same as Iif,except it is for the Sine transformation.

The previous transformed matrix equation may be written more
simply with a change in the range of the index i:

E « =F, +E[$‘(AA’", AB’"...)}
o i i) =\

Where i,j=1,2,..2N
. =a.,i=12,.N
J J

= bj, i=N+1,N+2,..2N

E = [AA]
ij ij

Inverting the Eij matrix, one obtains an explicit expression for the
generalized coordinates:

.= a )
x;=01,8y...a ;1 b,b,..b

= g1 15 m agm ). repected index ;
cxi-Eij Fj+Eij HJ. [E(AA ,AB )] ed index j

’ denotes summation

The first term on the right-hand side is the vector of generalized
displacements due to the external forces alone, while the second are due
to the unknown physical displacements at nonlinear elements.

11



Thus there are 2N equat1ons with 2N + 2M unknowns; the latter being
the cosine (A™) and Sine (BM) components of the relative physical
displacements at M nonlinear connect1ons These are the ultimate
unknowns. To solve for the A™ and B™'s, displacement compatibility
relations at the nonlinear connections are formed.

Recall that: X"‘=<p;"qi

From the assumed harmonic form of the displacements, it follows that
at point m:

n
B" = ¢, = Zlq>:"bi= > ¢,
i=

i=N+1

where the repeated index i indicates summation over the modes.

The components of the physical displacements at any of the nonlinear
elements are therefore:

T L e

i=1 i=1 j=1 l

2N 2n 2N
S oot = S q,f‘[ > {Ei;lFJ.+EJIEJ(ZAAZ,ABI...)H

i=N+1 i=N+1 j=N+1 7

NOTE:

Forming similar physical displacements at both ends of a nonlinear
connecting element, one obtains their difference which is the relative
physical displacement. Thus, for the cosine component at point m:

@Am‘@Am= ‘<Z¢ [Z{ o +E-1H(VAA’ AB'... H>

_<Z¢ [S’[ ~lp +E"H<VAA ¢_\Bl H>®

12



A similar expression is obtained for the Sine component:
Bm - Bm = m
@ @ AB

In 1ike manner, relative physical displacements at all the nonlinear
connecting elements are obtained, resulting in compatibility relations
or iterating equations whose number is twice the number of nonlinear
elements. By this process we have reduced the number of iterating
equations from 2N (twice the number of generalized modal coordinates) to
2M (twice the number of nonlinear connecting elements).

Substituting the relative physical displacements (obtained by
iteration) into the explicit expressions for the generalized
coordinates, one then obtains the complete solution. The physical
displacement at any point on any physical subsystem is calculated by
simple superposition.

The previous discussiontacitly assumed that the nonlinear connecting
elements were planar. However, nonlinear rotor bearings deflect in a
radial direction. This has components in both vertical and horizontal
planes. With this regard, the displacement compatibility relations must
be found in 2 planes, which increases the number of iterating equations
to 4M (four times the number of nonlinear elements) - still a
considerable reduction from two times the number of generalized
coordinates. Note that the generalized modal coordinates include
vertical as well as horizontal degrees of freedom.

It will be noted that the global matrix equation of motion as well as
the compatibility relations at nonlinear connections are derived in the
standard way: by Lagrangian or Newtonian formulation and modal
superposition. No recourse to Lagrangian multipliers was made to obtain
the compatibility equations via constraint relations, as was done in
(11). This theoretical rationalization helps establish the fundamental
basis for the methodology. However, the results obtained in the present
work by the standard formulation are identical to what would be derived
with the concept of Lagrangian multipliers (11).

3.2 Application to Turbine Engine Steady State Response

The preceding theoretical approach was applied to the turbine engine
problem employing the earlier formulation of TETRA. Thus the reconstruction of
the entire engine’s dynamic response from the modal characteristics of its
components’ normal modes is made by modal synthesis. The modeling of the
engine structure is unchanged.

However, rather than selecting the time history of the engine response (for

the transient case), one picks the range of frequencies where the solution is
required in the steady state analysis.

13



Because the general rub or bearing element (nonlinear spring) produces a
force that is a cubic in the relative displacement, the radial nature of the
displacements means that the connecting forces couple motions in the horizontal
and vertical planes. Thus the components of the forces and physical
displacements at the nonlinear connections are four in number:

(1) Vertical

(2) Horizontal

(3) Cosine Component
(4) Sine Component

This means that the number of iterating or compatibility relations is four
times the number of nonlinear connecting elements rather than the two times in
a system of a single plane.

3.3 Solution of the Compatibility Relations

The reduced algebraic equations governing displacement compatibility at
nonlinear connecting elements is equal in number to 4-times the number of
nonlinear connections. Principal unknowns are the relative physical
displacements at these junctures. This system of nonlinear simultaneous
equations are solved by iteration. Because of the doubly nonlinear character
of the general rub element, the convergence of the iteration routine may not
always be certain. The double nonlinearity arises from this, that the rub (or
nonlinear) element has both a cubic term and a deadband. The deadband itself
is a nonlinear property even when the associated spring rates are constant.
However, the convergence problem is not really serious when deflections are
small (in the order of bearing clearances). Only when deflections are very
large will these problems arise.

In the computational algorithm developed for TETRA 2, the iteration
subroutine is written as a module which may be replaced or added to - at the
option of the user. The program has 2 IMSL iteration modules. These are based
on Newton's Method and the Secant Method.

The relative physical displacements, determined by iteration, allow
calculating all the forces in the system of equations in the generalized
coordinates, and hence, all the modal amplitudes. The latter is performed
simply by inversion technique. Subsequently, the physical displacements at all
points in the complete structure are ferund by superposition. These, as well as
the bearing loads, are found as in the original TETRA.

The following sections are the amplification and application of the basic
theory to the detailed analysis of the TETRA engine model. These contain the
explicit and very detailed working relations describing the global matrix
differential equation formation, the transformation to algebraic equations by
harmonic balance, formulation of the iterating equations and the special
treatment of the deadband. The latter describes the numerical procedure for
performing the harmonic balance when rubbing is intermittent rather than
continuous.

In the next volume, which is also the user’s manual, sample cases are
described along with input and output descriptions. Because TETRA 2 replaces
the original TETRA program, with the dual capability of transient and steady
state analyses, the full and complete set of input sheets (with descriptions
and instructions) and output options are given.

14



4.0 Part II: Detailed Application of the Theory to Turbine Engines

The turbine engine modeling developed in the original TETRA has been
presented, e.g., the ordered concatenation of the structural subsystems in
terms of their normal modes and as governed by the method of modal synthesis.
However, for the steady state cases the equations to be solved are the
displacement compatibility relations at the nonlinear connections, which number
four at each of these joints.

As discussed in Part I, the steady State response analysis requires the
following:

1) Formation of a global matrix differential equation in the
generalized coordinates

2) Transformation of these equations by the principle of harmonic
balance with simultaneous nonlinear algebraic equations

3) Formation of displacement compatibility relations at nonlinear
connecting elements

4) Iterative solution of the compatibility relations - yielding the
relative physical displacements at the nonlinear connections

5) Substitution of these physical displacements in the transformed
global equations of the generalized coordinates, and calculating
the latter by inversion

6) Calculating the physical response of the entire engine by
superposition

These calculations were made in the frequency domain so that the results
describe the forced steady state response of a turbine engine at the principal
harmonic of the excitation frequency.

The implementation of the methodology in the original TETRA program has
resulted in TETRA 2, which now has the dual capability of the transient version
and steady state. In addition, the scope of the transient version has been
increased to contain the following enhancements initially developed for the
steady state analysis: improved rub element (with the cubic nonlinear factor),
structural damping capability (applies for physical connecting element types 1,
2, 4, and 5), and new printout options.

Because the transient analysis has been virtually untouched, this portion of
the report is concerned only with theoretical details of the steady state
analysis. Only in the user’s manual, (Volume 2) are the transient and steady
state options merged together via input sheets and output.

15



The following sections document the detailed working equations and their
implementation into TETRA 2. One should use the fundamental global matrix
differential equations presented in Part I as a general reference in reading
what follows, because this provides a bird’s eye view of the equations to be
solved and the inter-relationships of the various elements. For instance, it
should be noted that forces are initially derived in physical space and
subsequently developed in generalized coordinate space. This is followed for
flexible bladed disk, gyro linear connecting elements, and nonlinear
connections.
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4.1 Applied Forces For a Steady State Analysis

4.1.1 Physical Unbalance Forces

The unbalance forces are illustrated in the figure on the type K-1 input
sheet. Only the steady state unbalance forces are discussed here, since the
transient analysis unbalance loads were covered in reference 1. For a steady
state run, the unbalance forces are:

Fu jz= U wlsin(@t + &)

Fuj_y = Uw’cosiot + d)
where:
Fujz = Unbalance load at point j in the z (vertical) direction.

Fujy = Unbalance load at point j in the y (horizontal) direction.

rotor speed

time

unbalance magnitude for the unbalance load
Phase angle for the unbalance load

S Qe+ g

Note: For each unbalance load the global point number j, unbalance
magnitude U , and phase angle ® is input (see type K-2 namelist input
sheet). More than one unbalance load may be inputted for a given point.

Using trigonometric identities, we can rewrite the unbalance forces in terms of

cos and sin components as follows:

Fujz = Uo)zsin(p oos wt + Uo)zmscp sin wt
F'ujy = Ucozcosq) 008 Wt — Uo)zsincp sin wt
Letting F =F° coswt+ F° sinwt
ujz ujz ufz
F =F_ cosot+ F° sinwt
ujy ujy ujy

we see that the magnitudes of the cos and sin compohents are:

FS. = Uw’sind

ujz

F?® = Uw?® cosd

uj

Fc,y= Uw?cosd

uj
F°._ = ~UcwPsin )

ujy

17



4.1.2 Physical Pcos (““*‘b) Forces

For a steady state analysis run, TETRA 2 also makes provision for inputting
applied loads of the form:

ijk = P cos(wt + )

where:

ka = Applied forces at global point j in global direction k.

Force magnitude for the load
Steady state forcing frequency
Time

Phase angle for the load

S+ £ v

Note: For each Pcos (wt+¢) Tload, the global point number j, force
magnitude P, phase angle ¢ , and global direction number k is inputted (see
type L-2 input sheet).

Using a trigonometric identity we have:

ijk = Pcos $ cos wt — P sin ¢ sin wt
Letting
L, =F° t+ F°  sinwt
Fka pik 0% pik

we see that the magnitudes of the cos and sin components of the force are:

F;jk = Pcosd
Fé¢_ = —Psind
pik

4.1.3 Total Physical Applied Forces

The total applied force for a given point and direction can be written in terms
of the cos and sin components as follows:

= . St t
quk ny.k cos ot + nyk sinw

where:

Fqk = Total applied force for global point j and global direction k
F°., and F°.

ajk ajk are obtained by summing the unbalance loads and the Pcos{wt + ¢)
loads for global point j and global direction k as follows:
Foe = 2 et 2 Foik Foi = > Fin ¥ Fo

18



where

Magnitude of the cos component of an input unbalance load for global

ujk =

’ point j and global direction k (see section 4.1.1)

4k = Magnitude of the sin component of an input unbalance load for global
point j and global direction k (see section 4.1.1)

ot = Magnitude of the cos component of an input Pcos(wt+ ¢) load for
global point j and global direction k (see section 4.1.2)

sk = Magnitude of the sin component of an input  pcoswt+¢) Toad for

global point j and global direction k (see section 4.1.2)
4.1.4 Generalized Applied Forces

The generalized force for generalized coordinate i may be written in terms of
the cos and sin components as follows:

F = chos(nt+ Ffsinmt
t

where:

F, = Generalized force for generalized coordinate (global mode) i

j=lk=1
n 6
Ffz Z Z F:ukq’uk
j=1lk=1
where
F;k = Magnitude of the cos component of the total applied force for global
s point j and global direction k (see section 4.1.3)
Fix = Magnitude of the sin component of the total applied force for global
® point j and global direction k (see section 4.1.3)
yk = Mode shape for global mode i, global point j, and global direction k

19



4.2 Linear Physical Connecting Elements

There are six types of physical connecting elements. All of the six types can
be used for either transient analysis or steady state analysis runs with the
exception of the type 6 element (squeeze film damper element), which can be
used for transient analysis runs only. The linear physical connecting elements
include type 1 (general spring - damper element), type 2, (link - damper
element), type 4 (engine support - links element), and type 5 (uncoupled point
spring - damper element). This section discusses the equations used for the
linear (types 1,2,4, and 5) physical connecting elements for a steady state
analysis run. The equations used for the nonlinear type 3 element (rub
element) for a steady state analysis run will be discussed in section 5.

4,2.1 Transformation Matrix

For steady state analysis runs, a transformation matrix [ ¢ ] must be
calculated for each of the linear (type 1,2,4 or 5) physical connecting
elements to aid in calculating the contributions of the element to the global
matrices.

A sample transformation matrix is shown in figure 4-1. This figure shows the
transformation matrix for element 3 of the demonstrator model. For this
element, joint I (global point number 5) lies on the rotor (consisting of modal
subsystems 1 and 2) and joint J (global point number 2) lies on the case
(consisting of modal subsystems 7 and 8). Modal subsystem 1 (the vertical
plane subsystem) has 5 modes (global modes 1 through 5), modal subsystem 2 has
5 modes (global modes 6 through 10), modal subsystem 7 has 3 modes (global
modes 11 through 13), and modal subsystem 8 has 3 modes (global modes 14
through 16). The transformation matrix simply consists of the mode shapes
filled in at the appropriate positions, and the remainder (the bulk of the
matrix ) filled with zeroes.
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Figure 4-1. Sample Physical Connecting Element Transformation Matrix [@J

ELEMENT DIRECTION

GLOBAL MODE NUMBER
1 2 3 4 5 ’ 6 ! T ! 8 9 10 11 12 13 14 15 16
’ ! - |
I 7
A5 P Panr Para s 0 0 0 ¢ 0 :
8422 ®or2 Par2 Par2 Psi2 O 0 0 0 0 :
1
1o 0 0 0 0 Pgs ®rrs Pass Pors Purg 0
]
0
fo 0 0 0 0 Py Prra Para Pore Py
|
d K 0 0 0 0 0 0 0 0 0
e i e e i
2 | ¢11‘J.1 q512..1.1 4’13,.1.1 0 0 0
2] ! 0] [
y 1 Puve Piove Puue 0 0 0
t
y 0 | 0 0 0 ®asa Pisus Peaa
a {
2 { 0 0 0 P Pisus Pieaa
x : 0 0 0 0 0 0
(D‘ k= Mode shape for global mode number i, point (joint) j, and element direction k
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4.2.2 Stiffness Contributions

The contributions of a linear (type 1, 2, 4 or 5) physical connecting element
to the global stiffness matrix is:

(SC1 = (917 (K19

where
[SC1 = Stiffness contributions matrix for the element
(97 = Transpose of the element transformation matrix
(k] = Element stiffness matrix
(4] = Element transformation matrix (see section 4.2.1)

[sc] is usually a smaller matrix than the global stiffness matrix, and the
terms of the stiffness contributions matrix [sc] must be added into the global
stiffness matrix at the appropriate positions.

For a more detailed description of the global stiffness matrix, see section
4.4.3

4.2.3 Damping Contributions
4.2.3.1 Non-Structural Damping

For non-structural damping, the element damping matrix [c] is constant and is
not a function of rotor speed or forcing frequency. The element damping matrix
[c] for non-structural damping may be defined by input damping matrix
definition, or computed from input damping coefficients, or computed using the
element stiffness matrix, input element Q factor, and input element selected
frequency. In any event, the non-structural damping contributions of a linear
(type },]$, 4 or 5) physical connecting element to the global velocity matrix
is as follows:

INSDC] = [9)T [C10]

where:

[NSDC] = Non-structural damping contribution matrix for the element
)T = Transpose of the element transformation matrix
[c] = Element damping matrix
¢] = Element transformation matrix (see section 4.2.1)
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[NSDC] is usually a smaller matrix than the global velocity matrix, so the
terms of the non-structural damping contributions matrix [NSDC] must be added
into velocity matrix [C,] at the appropriate positions. For further details,
see section 4.4.4.

4.2.3.2 Structural Damping

For structural damping, the contributions of the element to the global velocity
matrix are calculated using the element stiffness matrix [K], input element Q -
factor, and either the independent rotor speed (if ISF = 1 on the type A input
sheet) or the steady state forcing frequency (if ISF = 2 on the type A input
sheet). The structural damping contributions are first collected into a
structural damping contributions matrix [C.] (see section 4.4.4). The
contributions of each of the linear (type 1, 2, 4, and 5) physical connecting
elements to this structural damping contributions matrix is:

1 7
[SDC] = — [¢]" [K][9]

QF
where
[SDC] = Structural damping contributions matrix for the element.
QF = Input Q - factor for the element
wF = Transpose of the element transformation matrix
(k] = Element stiffness matrix
{$) = Element transformation matrix (see section 4.2.1)

[SDC] is usually a smaller matrix than the structural damping contributions
matrix [C.], so the terms of [SDC] must be added into [C.] at the
appropria%e positions. After the structural damping con%ributions matrix
[Cc] is computed, it must be multiplied by either the reciprocal of the
independent rotor speed (if ISF = 1 on the type A input sheet) or the
reciprocal of the steady state forcing frequency (if ISF = 2 on the type A
namelist input sheet). For more details, see section 4.4.4.

Structural damping is a new feature that has been added to TETRA 2 , and which
was not present in the earlier TETRA program. This feature may be used for
either steady state or transient analysis runs. Structural damping is
applicable for the linear (type 1, 2, 4, or 5) physical connecting elements
only.

4.3 Gyroscopic Elements

4.3.1 Transformation Matrix

For steady state analysis runs, a transformation matrix [ ¢ ] must be
calculated for each gyroscopic element to aid in calculating the contributions
of the element to the global matrices (just as is done for the linear physical
connecting elements).
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A sample gyroscopic element transformation matrix is shown in figure 4-2. This
figure shows the transformation matrix for the gyroscopic element at global
point 4 of the demonstrator model. This gyroscopic element lies on rotor 1
(the independent rotor). Rotor 1 consists of modal subsystems 1 and 2. Modal
subsystem 1 (the vertical plane subsystem) has 5 modes (global modes 1 through
5), and modal subsystem 2 also has 5 modes (global modes 6 through 10). The
transformation matrix simply consists of the applicable mode shapes filled in
at the appropriate positions, and the rest of the matrix filled with zeroes.

4.3.2 Velocity Contributions

The gyroscopic element contributions to the global velocity matrix are
collected in a gyroscopic contributions matrix for the independent rotor [Gi]
and a gyroscopic contributions matrix for the dependent rotor [Gp]. The
contribution of a gyroscopic element to either the gyroscopic contributions
matrix for the independent rotor [Gy] (if the gyroscopic element lies on the
independent rotor) or the gyroscopic contributions matrix for the dependent
rotor [Gp] (if the gyroscopic element lies on the dependent rotor) is:

[GC1 = 617 (G (9]

where:

R3C}= Gyroscopic contributions matrix for the gyroscopic element

[$]1° = Transpose of the gyroscopic element transformation matrix

I

(Gl = F’I OP = Gyroscopic element matrix at point (joint) I on
p the rotor

I

14

(d]
The gyroscopic contributions matrix for the independent rotor must then be
multiplied by the independent rotor speed, and the gyroscopic contributions

matrix for the dependent rotor must be multiplied by the dependent rotor
speed. See section 4.4.4 for more details.

Polar mass moment of inertia at point (joint) I on the rotor
Gyroscopic element transformation matrix (see section 4.3.1)
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4.4 Formation of the Global Matrices

4.4.1 Matrix Equation

The equation of motion is:

(Mg + [Klq + [Clg =F + H

£
>
o
-
1]

generalized displacement

global mass matrix

global stiffness matrix

global velocity matrix

generalized applied (external) force vector
generalized nonlinear (rub) element force vector

[ Lo Tomn T o Lpm W )
ITTNMORX
[ WY WY WY S )
nn " nnn

The following sections detail how we find the [M], [K], and [C] global
matrices. In addition, we will also show how we combine the [M], [K], and [C]
matrices into one global solution matrix [GM].

4.4.2 Global Mass Matrix [M]
[MI = [M] modal masses + [M] flexible bladed disks

The global mass matrix consists of the diagonal modal mass terms and the
non-diagonal terms due to the flexible bladed disks (if any). These terms are
saved in arrays in TETRA. The global mass matrix itself is not saved in TETRA,
but rather the terms of the global mass matrix are written directly into the
global sotution matrix in subroutine GLOB2.

A sample global mass matrix is shown in figure 4-3. This figure shows the
global mass matrix for a model consisting of one rotor on which two flexible
bladed disks are located. The rotor is composed of two modal subsystems (one
for the vertical plane and one for the horizontal plane), and each flexible
bladed disk is also itself a modal subsystem, making a total of four modal
subsystems.

Note that the steady state analysis global mass has the same format as the
flexible bladed disk mass matrix used for a transient analysis run (which is
shown on page 70 reference 2). However, the transient analysis flexible bladed
disk mass matrix only includes the modes for the rotor on which the flexible
bladed disks are located and the modes for the flexible bladed disks, and is
only found if at least one flexible bladed disk is present. The steady state
global mass matrix, on the other hand, includes all the modes for the model,
and is always needed, even if there are no flexible bladed disks.
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4.4.3 Global Stiffness Matrix [K]

(K]= [K]modal stiffness+ Z [q)i]T [Ki][(pi]
i=1

The global stiffness matrix consists of the modal stiffness terms (along the
diagonal) plus the contributions of the linear (type 1, 2, 4, or 5) physical
connecting elements. The contributions of each linear physical connecting
element (see section 4.2.2) are added into the correct location in the [K]
matrix. The [K] matrix is stored separately in TETRA. Note, however, that the
modal stiffnesses of the flexible bladed disks (if any) vary with the speed of
the rotor on which the flexible bladed disks are located (these are the only
stiffness terms that vary with rotor speed or forcing frequency), and hence the
FBD modal stiffness terms are not incorporated into the [K] matrix of TETRA but
rather written directly into the global solution matrix in subroutine GLOBZ.

4.4.4 Global Velocity Matrix [C]

1
(C1=(C) + g€+ 9, [G,1+ Q) [Gpl + @y G ]
3

where

[C,1 = (C) it damping * 2 1,17 [C) ;]
i

= the contributions of the modal damping plus the non-structural
damping contributions of the linear (type 1, 2, 4, or 5) physical
connecting elements. The contributions of each linear physical
connecting element (see section 4.2.3.1) are added into the correct
locations in the [Co] matrix. The [C,] matrix is the same size
as the global velocity matrix [C] (square matrix whose order = total
number of modes)

Q_ = Frequency used for the structural damping. This corresponds to the
independent rotor speed (if ISF = 1 on type A input sheet) or to the
steady state forcing frequency (if ISF = 2 on the type A input
sheet).

n 1 T
[c)= > oF &l Klle)
4

i=1

= Matrix for the structural damping contributions (not including the 1/Q,
multiplier) of the linear (type 1, 2, 4, and 5) physical connecting
elements. The structural damping contributions of each linear
physical connecting element (see section 4.2.3.2) are added into the
correct positions in the [C4] matrix. The [C¢] matrix
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is the same size as the [C] matrix except that the rows and columns for the
flexible bladed disks are omitted (C; is a square matrix whose order equals
the total number of modes in subsystems 1 through 11).

Q . Independent rotor speed

n
[G,] = 21 9,17 (G 0,]

1=

= matrix for the contributions (not including the Q multiplier)
of the gyroscopic load points on the independent rotor. The
contributions for each gyroscopic load point i (see section 4.3.2)
are added into the correct positions in the [G;] matrix. The

] matrix is a square whose order = total number of modes for the
éependent rotor.

@, = Dependent rotor speed

n
Gyl= > @1 G,

i=1

= matrix for the contributions (not including the 2, multiplier)
of the gyroscopic load points on the dependent rotor. The
contributions for each gyroscopic load point i (see section 4.3.2)
are added into the correct position in the [Gp] matrix. The [Gp]
matrix is a square matrix whose order = total number of modes for the
dependent rotor.

Qep= speed of the rotor on which the flexible bladed disks are located.

= matrix for the contributions (not including the ©gmp
multiplier) of the gyroscopic loading due to the flexibie bladed
disks. This does not include the terms for the flexible bladed disk
center of gravity points, which are included in either the [Gy] or
the [Gp] matrix. See figure 4-4 for the contents of the [GFBD]
matr1x

The global velocity matrix [C] is not stored separately in TETRA, but the
component matrices [C ], [C ], [Gy], and [Gp] are stored separately.

The component matrix [Ggpp ] is no{ stored, but the non-zero terms of this
matrix are stored in arrays and scalar var1ab1es The terms of the component
matrices are multiplied by the appropriate multipliers and incorporated

directly into the correct positions in the global solution matrix in subroutine

GLOB2.
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4.4.5 Global Solution Matrix [GM]

Using tensor notation, our equation of motion is:

Migdy + Kigag + Cigay = Fy + B
where
Mij = global mass matrix
Kij = global stiffness matrix
Cij = global velocity matrix
q;" = generalized displacements
F; = generalized applied (external) force vector
H; = generalized nonlinear rub element force vector

We can substitute:

q, = ajcosmt + bjsino)t
F, = Ficoswt + F? sin ot
H coswt + H’ sin ot

(the H; expression is possible because we use harmonic averaging to get the
non11near (rub) element forces, as will be shown later).

:13'
[l

This gives:

2 . .
- Mi.(a.cosmt+ b.smmt) + K..(a.ooswt+ b.smwt) + o)C,.<—a.sinmt+ b.coscot}
G\ J g\"J J iy J J

F'fcosmt+ F sin wt + Hccosmt+ H sin wt

Now separating out the sin and cos parts this yields two equations:

—sz _.a coswt + K..a coswt + oC..b coswt = Fecoswt + H coswt
v J g J yoJ t i

—@’M b sinot + K..b sinot — oC. a sinot = Fésinot + Hsinot
iyoJ yoJ T i i
Dividing through by coswt and sinwt  and rewriting:

( %l+K)a+MZb-F+H“

(-sz.. + K..)b. -wC.a =F +H®
tJ y/oi Uy oJj 3 i
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We can write this in matrix form as follows (also noting that M;; = 0 for i=j):

2
—0)M11+K11,,,'..,.

.. K

L —o'M_+K
nn

nltl.u--o-

-

I EREEK] coc-o—(oc

s e0e a0 DO ase o
*

L

where n =

1n

—mC’ll ............-.—(DC

nn

in

nn

e e e e = e e e e e e e et A

g
« O

1m:*"

e ® 8 60 v o

e ® 4 a s s v o
.

———

mcnl .c.-oo-ooviploo-dc

.n---ooc-noo.o-’mcl

.

2 K
—‘l)M11+K11¢A.-'cvnnco'

K *se s s vs e —sz :FK
nl nn

number of generalized coordinates (modes)

n

nn

in

nn

-

F$

1

S sk

FS

We define the large 2n x 2n matrix on the left hand side to be the global

solution matrix [GM]:

—

2
-’(l) M11+K1

.
.

o]

¢t 60 8006 o

-wC

2
K O.......'.-QM
nl

+K
n nn

n

-o--.o.--uoco._mc

in

nl '--.-otgoocoo.—wc

nn

J
l
i
I
|
I
|
!
]
{
|
!

oC

2
-W M11+K11-000100000-o

K
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We see that knowing the elements of the global mass matrix M, ;
of the global stiffness matrix K;;, the elements of the g
, and the steady state %or

matrix C;;
global soiution matrix.

Then we have:

GM

ey Fﬁ
: .
. o
a, | | %
by 1
- o
: .
. .
’ L ]
o L 2
A IS
b, F,
L0 J1L
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4.5 Iteration Method and Equations

4.5.1 General Method

We demonstrated in the previous section that the equation of motion can be
written in matrix form as:

— 1 - - 1 r -
al | B
: . :c
eml| ™ |= s o
8
-€1 F? ‘?1
b F H*
n n R
L - L -l L - L -t

Solving for the cosine and sine components of the generalized displacements
(a; and b; respectively):

- - — -~ 1 — 1 .- - _ —
a, F‘1 1 H‘l _1
e, AR R,
= GM GM ’
b f: I{;
b, F, H!
L . L 4 L L]
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We define:

and

Then we have:

35

GM

GM

R Vector

T Vector



Expanding the T vector in the above we get:

. R — -
¢ c 3 3
a, R® gmH‘i +o.tg H v g (HU g, H
- c ' .
a R C 8 ]
n = n + gn.chl * - +gn,an + gn n+lH1 a gn2an :
b R; ¢ c s s (1)
2 . gn+llHl LR PPN L S - SRR ST RS- SR
b RC ’ C C 8
i "d "J Bon Hy +.-+8y, H, +g, H +. -8 an2,H,,

wherelthe gj,j are the elements of the inverse of the global solution matrix
[GM]

The g;; values (elements of the inverse of the global solution matrix) are
found Qn a straight forward manner by first finding the global solution matr1xc
[GM] as detailed previously, then inverting the global solution matrix. The R
and R values (the R vector) can also be calculated in a straight forward
manner' by multiplying the inverse of the global solution matrix by the applied
(external) force vector F (also easily found), as per the definition of the R
vector.

i

If there are no nonlinear (rub) elements, or .if there is no rub because the
dead band has not been exceeded for any rub element, then the sine and cosine
components of the generalized nonlinear (rub) e1ement forces (the ff and fi
respectively) are zero. For this case, the cosine and sine components of the
genera11zed displacements (the a; and bi respectively) can be found easily
since they are equal to the 1? and R? values, and we’re done. However, if
nonlinear (rub) elements are present, and if there is a rub for at Teast one of
the rub elements, then we must find the Ef’ and H® values, which becomes
much more involved. ’

To find the ff and 17: values (if needed) iteration must be performed. This
is done by der1v1ng a set of iterating equations in which the rub element
relative displacement components (the Axs ) are the unknowns. For each
jteration, we calculate the rub element physical force components at joint I
(the P’s), which are functions of the Axs , and which get plugged into the
iterating equations. Then, after the iterating equations have (hopefully)
converged to a solution, we take the final values for the rub element physical
force components at Jo1nt I (the P’s), and calculate the nonlinear (rub)
element generalized force components (the H‘ and H“ values) (the H vector).

36



The rest is simple. The T vector is then found by multiplying the inverse of
the global solution matrix by the H vector as per the definition of the T
vector. The R vector and the T vectors are then added together to find the
cosine and sine components of the generalized displacements (the a; and b;
respectively).

The following sections detail the derivation of the iterating equations and the
derivation of the rub element physical forces at joint I.

4.5.2 Derivation of the Iterating Equations

We can write:

AX, = AX° coswt+ AX® sinwt
kv kv kv

AXI:.H = AXZJIcoswt+ AX'Z‘Hsinwl
where AX,, = relative displacement for the k’th nonlinear (rub) element

in the vertical direction
8X, n = relative displacement for the k’th nonlinear (rub) element
in the horizontal direction

For each nonlinear (rub) element k, we have four equation as follows:

n .
AX, =Xy s~ Xy = Zlai<¢k,i,u.1_¢k,i,u,d> 2)
i= .
AX, = X:,H.l - Xi,H.J = ‘Tl“;(q’k.‘,u,l ~bing > @
"
AX, , = Xi,u.l ~Xeos = = b, (‘bk,i.u.l BRIy ) 4)
1
AX:,H = Xi,}l,l - Xi.u,.; = bx(,_q)k,i,ll.l ~biny ) (5)

=1

where X o 1oy = €OSine(c) or sin (s) component of the vertical (V) or
’ ’ horizontal (H) displacement for joint I (I) or joint J
(J) for the k’th nonlinear rub element
Privor H.1ord = Mode shape for k’th nonlinear (rub) element, mode i,
vertical (V) or horizontal (H), joint I (I) or joint

J (J)
a; = cos component of the generalized displacement for
mode i
b; = sin component of the generalized displacement for
! mode i
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We now define:

Ady ;= ot~ Privyg

Ay g =i~ b iny

Substituting this into equations 2 through 5 we have:

n
= Z a;0d,,,
i=1
n

AXyn = Z @, 80, . n

1=

n
AX:‘U = Z biAq)k,i,D

i=1

n
8 =
AX/.,H - Zl b, Aq>l¢,i.H
1=

Further, we can define

n

Fp,= 2 0,Ab,, ,—AX, =0 ®)
;:1

Fon= ot 0,8, , y—AK, 4y =0 (7
n

f- 300, m0,m0 ®
i=1
n

Fon= Z 5,80, , y— 8%} =0 ©)

...
]
—

where F"°”

PP the iterating equation for the k’th rub element, cosine (c)

or sin (s) component in the vertical (V) or horizontal (H)
direction

The unknowns 1n the 1t rating equations are the relative displacement components
aXy AX 4y . Axy HE) During iteration the values of the (k‘w Fer oo Fon
expresswns approach 0 as the unknowns approach their true value. The number

of iterating equations equals 4 times the number of nonlinear (rub) elements.
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From equation 1 we see that:

n

a, =R+ ,\ g, M5+ zg‘nﬂf’,
J—l

=R?‘+§g _.}19+§g °
i P

. H”
n+i,j J e nt+i,nt) J
j=1 =

Plugging the a; and b; expressions into the iterating equations (equations
6 through 9) we get:

c - c
Z( Zgi.jjl'+ lgln‘fj j> ¢klU Axk,u—o
] =1
n n n
= y N AXS =
Fy - Z( lg’,111‘+ gl n+j j)Aq)kLH le,H_0

n n n
C 8 _ S -
Feo= > (R ( 2 8nyijH; ¥ Z gn+1,n+jHj>A¢k,i,u Ay =0
1=1 Jj= =
n n
8
g ( + Z g"'“-.l J it Z gn+1 n+jin>A¢k.i,H AX: H™ 0

Fi,u—
Jj=1
Now defining:
n
< e ac
zRi Aq)k.;,u S
i=1
n
N pC . aC
Z-Ri Aq’k,i,ﬂ_sk.ﬂ

-
[]
-

s

...
[]
—

S — 1
Ri A¢’k, o Sk.u

M=
<

-

— K
A‘bk.i:ll Sk H

-
]
—_

We can write:

Fev=Si,+ 2> 4 HE '
k. v ‘% ¢klu> gl,l J+ i?l A‘pkluzlgt n+_/ _] AX:,‘U=O (10)
¥C c 'S‘ S . 2
F$ =8 + A, D g H + N S s
e Tkt 2 lz,z,Hng,_, it < ad, ,,J}_gi.,,+JHj—AX2‘H=0 (1)
TS < S S
F =8 + A _} c ,‘ N N s
hot The T & ¢’“".—g JRgns A¢k.i.ulgnﬂ.nu”j‘uk,uzo (12)
n n ‘=n /=1
. n
—_ Qs N N ¢ : - s ,
Fen=Sin* 2 Aq>,”,,}_ Saei it 280y Sg, oAy, =0 a3

t=1

\

1=1 J=1
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To get the generalized nonlinear force (the H’s) we add the contributions of
joint I (subscript I) and joint J (subscript J) in both the vertical (subscript
V) and horizontal (subscript H) directions and sum over the nonlinear elements:

L
c _ \_‘ c '3 c c
HE = ‘,_._I(HJ.'U', HS ,  HHS L+ ij_H'J)

o
]

H® =

J Js Uy J S H,J

TV

3 s 5 s
I(HA I+Hj.ll,l+"j,v, + i’ )

To get each H contribution we multiply the mode shape ¢ by the nonlinear
connecting element force P.

L
c _ c c c . pe )
1‘1—.> (¢&LUJ Poor ¥ o mi Poun * Pejos Pens ¥ Pepng Teny

¢=1

L
s . N s s s p )
;= 2L(¢Lﬁm1 Povi* ®ejmi Pewur * ¢AhmJP&wJ T beng Fen
e=1

Noting that:

C —_ C . C = _PC
Pe,u.J_ ”Pe.u.l : Pe.u.J e H,1
S —_ 3 3 S = _Ps
Pe,u,.}‘ ‘Pe,u,l ’ Pe.u,./ e H, I
we get:

kn

He=>S | pe < - c -
J > € ol q>C.J.u.l q)f.j.u.J +P€.H.I ¢€,_],H,l ¢€,J,H,J

e=1
L
w=3 e, (o, - s |
ey _;?1 Py o\ Pe v ¢&Luﬂl>.+P€JLI~¢&LH,f.¢&jJLJ)
Defining:
AP

to = Pe ot~ Pej g

Ad o

.o =P -
¢JH ¢.j.H.I ¢j.H.J
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we get: L

c _. C c
H = ,ZI(P"""M’” +P qae‘j‘H) (14)
L
s __ s o
H;= 2 (Pe. ,IM’eJ.u*Pe,H.IM’e.f,H) (1%)

Substituting these expressions for 11 and Hj into equations 10 through 13 we
get:

n n L .
F$ =8¢ N N\ " ( c c
ho =Sk, T }-A¢k,i,02-gi,j— P, ot 8, t Poy A¢e_
i=1 J=1 =i 4
S S S
+ A )b S
+A¢k.i,u—gi,n+Jl( Pt 8, * Poy A(be,H)
i=1 j=1 e=1 s
—AXi =90
U
n n L .
~C — c N NG u c
Fen= Seu t '—A‘pkzll>—gi,j>—( PCUIA(bf,j,u +P;111A¢e‘ )
i=1 j=1 e=1 JoH
n n L
- < “‘( s s
+—A¢k1H_&-gln+Jl Py .1 80, +P£H1A¢e-,
i=1 j=1 e=1 ol
—AX‘I;,H =0
n n L
F; =8 + ( <
kv kv i% Aq’k,i.u Zlgn+i,j Czl Pe.v,l Acbe,j’v +P§.H.I A<De.j H
= Jj= = !
Sao,,, 3 3
+ AD ( s
; g .. ) P 8
i=1 ”""’jgl n+i,n+j Zl ¢ lI A(Df.j. PCH I A(Dej,H)
s _
-Au¥k,s 0

n n

L

5 — Qs N c c

Fen=Seu™ _\lA(plellgn‘HJE—( Po ot 8, + Poy A, )
i= J= = '

+\ A, L,

i=l

i1/

L

T( $ s
gn+1n+j— Pooi B8, + Poyy 80,
! e=1 o

s -
AXkH_O
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Rewriting:

n n L n n L
< _ Q¢ - N N N c . N N ¢
Feo=5Set }- Ay, , 28, 208, Ppyrt 2 80, \.— gi,jz Bb, iy Pon
i=1 Jj=1 €= i=1 j=1 =
n n L n n L
S i = s Z. 2. s
F A Y B A P T A D8 D By Py
i=1 j=1 e=1 i=1 j=1 e=
-AX° =0
k, v
n n L n n
+C ot N \_‘ N N
Feu=Sent >—A¢l¢,i,H'—gi.j—A¢€.j.u e,v,1 Z ¢k:H——g;JZA j H eHl
i=1 J=1 ¢=1 i=1 j=1
n n L n n L
N S N Y‘ s
+ZA¢/¢, B B, 200, Poy v 200, 2 8 00 2 8% 0Py
= = =1 i=1 j=1 t=1
(4 _
-—AQKk}, 0
n n L n n L
s _ @S N N NG c ? \“‘ N c
F-;,u 5k,u + — Acl)k,i,u 2- gn+l._] }— Aq)f.j,u Pe,u,l + s Aq)k,z.u — gn+x,j — Aq)e,j,HP&H.I
i=1 j=1 £=1 i=1 j=t =1
n L L
. s \ - s
+ 3 Aq)/z z gl,ll+j e Acbe,j.u PC. + \ Aq)k.t v —gn+i,n+j \_ A(bé' Pe H,
l=l J=1 t=1 t—l Jj=1 =1
8 _
-AXhu-O
n n L n L
s ~ — c \ C
Fen=Sen™ Z bd,, y > gn+;,j2- A, WPt ? Ad, in 2 gn+i,j2- By uPen
i= j=1 g=1 = j=1 e=1
n L n L
N N’ S N S
+ 2. A in z Entintjim Ay )0 Peot ™ Z Aq)k,t H Z Entintj Z q)fj wPen
i=1 j=1 e=1 i=1 j=1 e=1
£ -
AXk H =0
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We define the following parameters:

c =
Aku( _\IAcbkzng e,j,v
1=
n n
c C
Al o= 200, 42 8,,00,,,
i= j=1
n n
s —
Akv, ZA(P,”UZ Il+l_] q’e,,
=1 j=1
n
A;ue ZM’&;H» gn+i.jA4’e,j,u
=1
n
. RN
Bk, .\llA(pktuS‘gtJ q)CJH
=
n
¢ —
Bk H, ¢~ S Ad)k HS‘ i,j A(bf,j,H
i—l =1
n

ZAq’kluzl n+i,j q’e,u

i=1

B:H!_ > A¢szzgn+|J (be.H

=1
= V
Cove= 200, Z 8in+j B0
i=1 J=t
n n
e .
kH. & 2- A, 2 8ine, 8,
i=1 j=l
n
C =
k,u, € _ZA It:u3 gn+t.n+j A¢€.j,u
1=1 j=
n
=
kH ¢ &A¢kaTgn+i’n+j A‘bf,j.u
i=1 j=1
n n
D¢ =
kot Z Aq)k,l.u Z gl n+j Aq’C,J,
i=1 j=
n n
c —
Diye= > Ady i n > 8inej B p
i=1 i=1
n n
S -
Dk v.! A(bk‘ u}—gn"'l ’I+J ‘pe.’»}l
i= i=1
n n
S —_
Dine b Abgin 2 8nvisnej AP n
1= _]=l
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Substituting these parameters into equations 16 through 19 we get:

L

B =80t 3 (A P * B P e Phaut * D Pl )= 257,20
e;1

kll—S:I{+£( i ePe o1t Bune Py it ConePe, +D:HGP;HI) AX =0
Czl

Fz,vzsi.v-’- E(AZ.U,CP‘ +BZ,U€P;HI C;uepb +D"‘ P;H1>—AXZ,U=0
e=1
L :

I'Z”=S;v”+>—(AZIIEPCCUI+BZ,II!P;HI ('kH CP;uI+DZH eP;Hl)_AXZ,Hz

~
]
—

. . . I"C F'c Fs and Fa
These are the iterating equations. The ko' TkH' Tk

functions are calculated in subroutine FCN. The actual 1terat1on is performed
either by IMSL subroutine ZSCNT or IMSL subroutine ZSPOW, depending on which of

these routines the user specified via the nonlinear routine option IROUT (see
input sheet I1-2).

The S, A, B, C, and D parameters in the iterating equations are known
quantities and are calculated based on the proceeding definitions of these
quantities. Because the S, A, B, C, and D parameters do not change from
iteration to iteration, for efficiency purposes they are calculated only once
for each forced frequency, prior to iterating for the forced frequency.

The AX’s are the unknowns in the iterating equations. The P’s in the
iterating equations (the rub element forces at joint I) are functions of

the AX’s . See section 5 for a discussion of the method and the
equations used to find the P’s.

4.5.3 Equations for the Maximum and Minimum Relative Displacement
Magnitudes

The maximum and minimum relative displacement magnitudes for each rub element
are needed to determine (through comparison with the dead band) if there is a
rub for the given rub element and, if so, whether the rub is continual or
intermittent.

As noted previously:

¢ $ ;
= AX. cos AX sin wt
Axk,u kv swl + kv

s
AX = AX S AX sin wt
R H g COSOET AR, g
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where
AX, = relative displacement for the k’th nonlinear (rub) element in the
' vertical direction
AX, 4 = relative displacement for the k’th nonlinear (rub) element in the
horizontal direction

We next define:

sxp, = axg Jre (ax )
AX™ \/(AX" )2+(;AX°' )'—’

kH kH kH

q) = ¢u_¢H

Let

l A ’ = Maximum relative displacement magnitude for the k’th nonlinear (rub)
k] mar alement

i Ak‘ min = Minimum relative displacement magnitude for the k’th nonlinear (rub)
element

It can be shown (through the derivation is long-winded, so we skip it here):

m \2 m 2
\/(.AX”»U) +(AXk'”> 1 / m \4 m 4 m \2 m 2
A = + 5 AXk U) +(AX ) +2| AX 1 AX )cos2¢

k| max 2 Y k H kv k, H
m \2 m 2
B | min = 2 T o9 kv Tk H kv kH
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4.5.4 Determining If a Rub Is Present (That is, if Iteration is Needed)

Iteration is needed to find the AX's (rub element relative displacement
components) only if there is a rub for a least one of the rub elements. The
procedure used to determine if a rub is present is as follows. First, the S
parameters are found (subroutine PARAM1). Then, in subroutine CHECK, we find
the AX's that would result assuming there were no rub element forces
(that is, if the P forces were all equal to 0). From equations 20 through 23,
these are:

o — Q¢
AXZ,U - bk,u (26)
— Q¢
AX;H =S @7
(assuming no
Axil,=‘siu (28) rub element forces)
AX;H =S}y (29)

Then, using these Ax’s (calculated assuming no rub element forces), we
calculate the maximum and minimum relative displacement magnitude for each rub
element that would result assuming no rub element forces from equation 24 and
25. By comparing the maximum relative displacement magnitude with the dead
band for each rub element, we can check (as we do in subroutine CHECK) if a rub
is present for any each rub element.

If this check reveals that there is no rub for any of the rub elements, then we
know that the assumption of no rub element forces was correct. If this is the
case, then the AX'’s obtained from equations 26 through 29 are in fact the
correct AX's , and no iteration is needed. On the other hand, if this check
reveals that there is a rub for at least one of the rub elements, then there
are rub element forces, and equations 26 through 29 do not yield the

correct AX'’s . For this case, the Ax’s must be found via iteration
using equations 20 through 23.

4.5.5 Finding the Initial Guess for the Iteration

Assuming that we have found that iteration is needed (see section 4.5.4), then
we must find the initial guess for the iteration. This is done in subroutine
check. The initial guess is determined from the following rules:

1. If it is the very first solution (forced frequency), and the user inputted
an initial guess via the GUESS input variable (see namelist input sheet
[-3), then the initial guess inputted by the user is used.

2. If it is the very first solution (forced frequency), and the user did not

input an initial guess, then the initial guess for the rub element
relative displacement components are those that would result if there were
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no rub element forces (obtained from equatidns 26 through 29).

3. If it is not the first solution, but if rotor speed is considered for the
run, there are no unbalance forces, and if it is the beginning forcing
frequency for the current rotor speed, then the initial guess for the rub
element relative displacement components are those that would result if
there were no rub element forces (obtained from equations 26 through 29).

4. If rules 1, 2, and 3 do not apply, and if the previous frequency had a rub
for at least one rub element, then the rub element relative displacements
(found via iteration) for the previous forcing frequency are used as the
initial guess for the iteration.

5. If rules 1, 2, and 3 do not apply, and if the previous forcing frequency
did not have a rub for any of the rub elements, then the initial guess
for the rub element relative displacement components are those that would
result if there were no rub element forces (obtained from equations 26
through 29).

4.5.6 Solving the Iterating Equations

Assuming that we found that iteration was needed (see section 4.5.4), the first
step performed is to find the initial guess for the rub element relative
displacement components (see section 4.5.5). Next, we proceed to find the A,
B, C, and D parameters (subroutine PARAM 2) that appear in the iterating
equations. Then a whole bunch of subroutines are called (if needed) to solve
the iterating equations (subroutines SOLVE, NLFORP, BACKS, FCN, plus IMSL
subroutine ZSCNT or ZSPOW and several other IMSL subroutines or function
subprograms which are called by ZSCNT or ZSPOW). If there is no rub for any
rﬁb element (so that iteration is not needed), all of these subroutines are
skipped.

The user specifies which of two IMSL subroutines (ZSCNT or ZSPOW) are used to
solve the iterating equations via the nonlinear routine option IROUT (See

namelist input sheet I-2). By this means, the user chooses the iteration
method to be used.

At each iteration, the rub element physical forces at joint I (the P forces)
must be found so that they can be plugged into the iterating equations. These
forces are found in subroutine NLFORP. The next section details how we find
these forces.
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5.0 General Nonlinear Rub Element

5.1 Physical Force equations at Joint I

We now turn our attention to the equations for the rub element physical forces
at joint I. These equations are nonlinear, both because of a cubic term and
because of the dead band.

We define:

PauJ = Physical forces for the 1th rub element in the vertical direction
at joint I
P&lLl = Physical force for the 1th vub element in the horizontal direction
at joint I
‘A ’ - ‘/(AX >2+(AX )2 = Relative displacement magnitude for the
t b &H ¢th rub element.
AX, = Relative displacement in the vertical direction for the 1th rub
’ e1ement)(that is, the vertical displacement at joint I minus that at
joint J

8X, , = Relative displacement in the horizontal direction for the 1N rub
' element (that is, the horizontal displacement at joint I minus that
at joint J)
AX, ,= Relative velocity in the vertical direction for the 10 rub element

¢, = Relative velocity in the horizontal direction for the 1th rub
element

€ = Dﬁad band (this equals input variable DBAND on the type F input
sheet)

K, = Linear radial spring constant factor for the 1P vub element (this
equals input variable SK on the type F input sheet)

He = Nonlinear radial spring constant factor for the 1P yub element
(this equals input variable AK on the type F input sheet)

C, = Damping coefficient for the 1P rub element (this equals input
variable CC on the type F input sheet)

We can write:

for Ael =€ P, =0 5 Py =0
€0 .
__ _ 2
for Ae‘ > €,: Py = KeAXe.u(l ’ ‘>[‘+“e( 8, ‘Eo):l“ce AKX, (30)
A,
€, R ,
Py, = Ke“e,u("l i)[lﬂ‘e(,'\e _6()):'_08 AX, 4 @1
A



5.2 Harmonic Averaging

In order to find the Pevoi> Femir  Feoio and Fen values
to plug into iterating equations 20 through 23, we approximate the rub element
physical forces at joint I with the expressions:

= ¢ 5 s i 32)
Pe‘u’, Pe,u,1C°°w‘+Pe,u,l°m("l (
pe ¢ 33)
Pe.lll Iechosmt+PeHl.smw (

These expressions are not exact because, due to the nonlinearity and complexity
of equations 30 and 31, higher order terms involving cos2wt, sin2wt,

cos3 wt, sin3wt, etc. would also be present. However, these higher order terms are
neg1ected and only the first harmonic terms retained. Our prob]em then boils
down to finding the values of P, P n Pel,,, and P, . This
is accomplished using the method of ﬁarmon1c averaging.

Given a function f(t), the method of harmonic averaging involves integrating
over a cycle as follows:

21/

for the cos part: [ [(8) cos wt dt
0
M/w

for the sin part: ] f(O) sin wt dt
0

In order to perform the harmonic averaging, the following integral
transformations will be helpful. The derivation of these 1ntegra1
transformations is straight forward but is fairly lengthy so is not included
here.

For the expression:

q () = acoswt + b sin wt

We have: At 0
[ qlcoswtdt= — a (34)

qWsinwtdt = :;b (35)

q(Ocoswtdt = nb (36)

P 3ua(a2+bg> (38)

q3(t) wswtdt =
] 4w

2 3 ( 2 2)

Ww . B ub\a +b (39)
q"Wsinwtdt = ——————

0 1w

|
|
Izmwa(ﬁﬂnondtz -na (37)
|
|
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For the pair of expressions:

ql(t) =a coswt + b sinwt

q2(t) =c¢ coswt + d sin wt

we have:

e n|a@® + 3c) + 2bcd
2 _ |

[0 q,(® q,(t)coswtdt = s (40)

2 2

/e n[b(c + 3d°) + 2acd
2 . _ |

Jo q,0 q2(t)sm0)tdt = yy (41)
C C 8

Note that the Pyt Pemyr Pe,p» and P:;;: quantities,

which are found via harmonic averaging (except when there is no rub), are
functions of the relative displacement components AX, . AX; ., AX, . and AX; .
The AX’s are the unknowns in the iterating equat1ons. and each 1terat1on
provides a new guess for the AX's . Thus, the P,u,. P”, Py Pe T
and P,,,, values change for each iteration, so the harmonic averaging must

be done for each iteration.

If the equations are simple enough, closed form equations may be derived to
perform the harmonic averaging (as is done for a continual rub with dead band
equal to 0). If the equations are too complex to solve in closed form,
numerical integration (using Simpson’s rule) is performed instead (as is done
for a continual rub with dead band not equal to 0 and for an intermittent
rub). The advantage of using closed form equations, if possible, is that the
closed form equations are more efficient and more exact than the numerical
integration.

Further details of how the harmonic averaging is accomplished is contained in
sections 5.3.2, 5.3.3, and 5.3.4.
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5.3 Four Possible Rub Cateqories

Four possible rub categories are recognized by TETRA 2. These categories are
no rub, continual rub with dead band equal to zero, continual rub with dead
band greater than zero, and intermittent rub. The categories are illustrated
in figure 5-1.

The TETRA 2 program determines which of the four categories apply by comparing
the maximum and minimum rub element relative displacements (calculated using
equations 24 and 25) and the rub element dead band (input variable DBAND on the
type F input sheet). Note that this determination must be made for each rub
element and at each iteration (since the calculated maximum and minimum
relative displacement magnitudes change from iteration and iteration).

Different logic is used to calculate the rub element physical force
components Pt Popyr Bop,yr and P, .. depending on which

category applies. The following sections detail the equations used for each of
the four rub categories.

5.3.1 No Rub

If it is determined that a given rub element has no rub (see section 5.3), then
the rub element physical forces must be zero.

Hence, the program sets:

6M1=0
P2m1=0
ot =0
P;m1=°

and we’re done.
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& Clearance Circle
/ | 8]
NO RUB XS
&ﬁmbita] ElNipse
Axh.u

CONTINUAL RUB > 8 H
WITH €,=0 L/l/

Orbital Ellipse

CONTINUAL RUB AX

WITH €,>0

kH'®

Clearance Circle

Orbital Ellipse

INTERMITTENT RUB » AX, o
(shaded areas indicate
where rub occurs) Clearance Circle

Nomencl ature:

€ = Dead Band

| 8] = Relative displacement magnitude for the k'th rub element.

AX, 4 = Relative displacement of the k'th rub element in the horizontal
direction

64X, , = Relative displacement of the k'th rub element in the vertical
direction

FIGURE 5-L. FOUR PQOSSIBLE RUB CATEGORIES
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5.3.2 Continual Rub with Dead Band Fqual to Zero

If it is determined that we have a continual rub but the dead band equals O

(see sectmn 5.3), harmonic averaging is used to find P ,,,,: P”; ol
and P,H, . However, the equations simplify enough when the dead band
equals 0 that we can derive closed form equations for P, ol P, LH,I Pe ol
and P, , thus avoiding the less efficient process of integrating

.
numemcaHyHlTo find the desired closed form equations, we proceed as follows:

Setting €,=0 in equations 30 and 31 we get:

- 3 2 ‘
Py 1 =KAX, - Ke“e(AXe.u) - Ko, 8X, u(AXC,H) -C,A%,, (42)

_ 3 2 "
Py =KAXy 4~ Ke“e(AXe,H> - K, AXe,H(AXe.u> -C Ay (43)

Making use of the coswt integral transformations (equations 34, 36, 38, and
40) equation 42 becomes:

Tpe __T1 3n 2 2
s Poor= oK 0K = Tk ax; [(axs e (axg )

_ . )2 2
2o Kk [AX;,D[(AXC,H +3\AX, 4 )| v28%, AX, AX:H}

8
nCeAXe'u

Making use of the coswt integral transformations (equations 34, 36, 38 and
40) equation 43 becomes:

I e _n 3 2 s |2
mPCHI -SK AX;,H‘%)Ke“e AX:H[(AX;H> +(AXC.H> l

_41 A, {AX" [(AX‘ +3<Ax° )2] +2AX‘C‘HAX';’UAX‘;'U}
—“CCAX;,H

Making use of the sinwt  integral transformations (equations 35, 37, 39 and
41) equation 42 becomes:

—pf = _n ) 3_“ 8 2 s \2
® PC v, 1 wKC AX(,U- 4QK€p€ AXC.U[(AX;,U> + (AXC. u> ]
_l 8 2 ] 2
1o Kol {AXC,U[(AX;.H> M 3(Axe.u> ] +20X, AKX, 4 AX;H}
+nC€AX°e'u
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Making use of the sinwt integral transformations (equations 35, 37, 39 and
41) equation 43 becomes:

Bp o= -Zroaxt — 2k axt |(axe Vifaxe )
ol eHIT Tt At nT o e By eu) T A%,
n § 2 s |2 ]
-1 K, [AX‘,'HKAX‘;J) + B(AX“) ] +2AX;’HAX"€'U Axm]

+ nCeAX;’H

Rewriting the last four equations we get:
— 1 2 2 2 ( 2 8 s ]
P ,= - Ko, [Ax;[s(Ax;) wa(axy Jrraaxg P+ AXZ‘H>}+2AX¢,'UAX‘;,HAX€‘H

8
-KeAX:,‘v- o)CeAXe'u

1 [ 2 2 ( 8 2 ( s |2 8 8]
P s -t K, Ax;H[a(Ax;) rafax, P ea(axs e (axg | + 2ax; paxs axy,
8
_KQAX;,H—“)C(AXG,H
1 2 s |2 8 2 2 $ ]
P:.u,l= —Z che AX;,v{a(AX‘é,u) +3(AX¢,U> +3(AX€.H> +(AX;,H> } +2AX§.UAXCC.HAX€,H

8
—KCAXC'D— o)CeAX‘;,U

1
3 — hd 2 2 3 2 2 AXS AXS ]
em1= ~ 7 Kony [AX:H[:’(AX:.,) +3(AX¢;,H> +3<AX8,H> +(AX§.U) } + 20X, y X, AKX,

8
"KeAXe,H - “’CcAX;.H

5.3.3 Continual Rub with Dead Band Not Equal to Zero

If it is determined that we have a continual rub and the dead bgnd doecs not ,
equal 0 (see section 5.3), harmonic averaging is used to find P, ;. P, ;s Py, ;>

and P,y . The equations for this category of rub are too complex to
solve in closed form, so we must integrate numerically to find P‘; ol P;HI,
P:vI’ and P;HI' - o

Using the integral transformation of equation 34 on the expression given in
equation 32 we get:

@ [2!!/0)

0

Pe’ o1 08 ot dt
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Using the integral transformation of equation 34 on the expression given in
equation 33 we get:

= - coswi dt
¢HI - o P

2n/w
o @
¢,H,I

0

Using the integral transformation of equation 35 on the expression given in
equation 32 we get:

® Zn/w
s _ @ .
P, 1 = - J P, . sinot dt

Using the integral transformation of equation 35 on the expression given in
equation 33 we get:

CHI = ; P sinwt dt

M/w
s ® I
0 ¢H, 1

Substituting ¥ = wt , the preceding four equations can be rewritten:

S w4w (44)
Pevr1 =731, Teur®
g = (T p s waw 45)
eHI )y GHI
e 1T p nwaw (46)
Pe,l},’ - I 0 C,u,l sin
o =T nwaw 4n
eHl =g |, Tent

For a continual rub, we note that the products Pf,v.Ims ¥, Pe.H.I cos ¥,

00,1 Sin W, and P,y psin ¥ repeat themselves every 180°.

Thus, we need only integrate between 0 and n and double the results as
follows:

2 n
C —
Pe,u,I == Io Pe,u,l cos ¥dW¥ 48)
PN wdw 49
e = 5 ), Tenr (49)
3 2 ! ;
P = - 4 sin ¥dW (50)
tol =g |, Teul
2 n
s .4 .
Pe,H,l == Jo Pe,H.I sin YdW¥ (51)
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To perform the numerical integration, the integrals are divided into 10
subdivisions, with ¥ varying from 0 through = in steps of ™10
For each value of w , the parameters AX, , AX, ., AX, , and AX

. . WU ¢ H ¢, v ¢, H
are calculated using the equations:

AX, = AX° coswt+ AX® sinot
0 ¢, v e, v

— s
AX!,H = AXi’Hcoso)t+ AXe’Hsmwt
L ]
_ 8 .
AXC'U = u)AXe'ucoso)t— o)AX';'usmmt
£
— 8 .
AXe.H— wAXe’Hcoso)t— wAX:‘Hsmwt

Substituting W=wt and rewriting:
AX, =AX, cos¥+AX, sinW (52)
U ¢, v [ &)

AXC,H=AXf,‘Hcos‘P+AX;'Hsin‘P (53)

- s - i 54
AXe'u—co<AXe’ucos‘P AX‘;,vsm‘I’) (54)

- s ;
AX, 4= m(AXe‘Hcos‘!’- AXiHsm‘P> (55)

where © = forcing freauency, t = time, W= ot , and the relative
displacement components AX?,,, e A%, , and AX, ,, are known because they are
the guesses for the current iteration. ’

The Poy and Pe,H values are then calculated for each value of W using
equations 30 and 31.

Finally, knowing the Pe,u and Pe,H values for each value of ¥ between 0
and o (in steps of w10 ), the values of the integrals in equations 48
through 51 are obtained using Simpson’s rule.

5.3.4 Intermittent Rub
If it is determined that we have an intermittent rub (see sectign 5.3),

harmonic averaging is used to find Py, ;. Poy . Py, and Ppy
Again, the equations for this category of rub are too complex to solve in

. . . C () $ S
closed form, so we must integrate numerically to find P, ,, P,p,. Py, »and P
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As for a continual rub with dead band equal to 0, the following equations are
applicable (see equations 44-47 of section 5.3.3):

P =1 -

o= o ] Pe’u'lcos‘l’d‘l»‘
¢ =1 2“I"' wdw
Poni=7 o GHIT®

3 = l 2“P in¥d
Pew1= 7 o eur®® ¥
8 =1 2“P inVdW¥
Poni1= 3 o eHI%

For an intermittent rub, the orbital ellipse intersects the clearance circle at
four points (points A, B, C, and D in figure 5-2a). Rub element forces are
present only for the two portions of the orbital ellipse that rub (between
points A and B and between points C and D in figure 5-2a). Furthermore, the
products P, ,  cos'¥, PC'H'IcosW, Pe'u‘lsin‘ll,and P sin¥ are the same for
the two portions that rub (see sample P, ,cos¥ """ versus ¥ plot in
figure 5-2b). Hence, we need only integrate over one of the two rub areas (say

getween points A and B) and double the result. Thus, the preceeding equations
ecome:

pe N 2 ¥B
% el oA Pe‘u‘lcos‘lld‘lJ (56)

¥vB
c -
Pe,H,I"' ] Pe'H’Icos‘Pd‘U B7)

YA

s 2 L J:] '
Pe‘u'1= - Pe’v‘lsmll’d‘{r (58)

n Jwya
o (VB
s - £ i 59
Pe,H.I == IWA PC,H,IsdeW (59)
where ¥4 is the ¥ angle for point A and ¥ is the b4 angle for
point B.
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Figure 5-2a. Orbital Ellipse and Clearance Circle
(Shaded areas indicate where rub occurs)

B
‘<ZZ@(——-0rbita1 Ellipse
€ A s AX

c 0 > eH

“’—-—U earance Circle

Figure 5-2b. Sample P, ,cos¥ Versus ¥ Plot

Pe‘v'lcos‘l'

Figure 5-2. Intermittent Rub
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To perform the numerical integration, the integrals are divided into 10
subdivisions, with ¥  varying from ¥, to ¥, in steps of (¥5—'¥,)/10.
The procedure is the same as for the contmua'l rub with dead band not equa] to

0. That is, first thedX, ., AX,,, AX, , and ¢y Parameters are found for
each w value using equat1ons 52 through 55. Then, the P, and P, y
values are calculated for each value of W  using equations 30 and 31.
Finally, knowing the P, , and P, values for each value of w , the
values of the integrals in equatwns 56 through 59 are calculated using
Simpson’s rule.

So far we have not covered how to find the ¥, and ¥, angles over which the
integration is performed. This is explained in section 5.4.
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5.4 Equations For the Intersection of the Orbital Ellipse and the
Clearance Circle

For an intermittent rub, we must find the equations for the intersection of the
orbital ellipse with the clearance circle. This is needed because we must
numerically integrate over one of the two rub areas, and we must know the
beginning angle ¥, and the ending angle ¥, for the integration (see
section 5.3.4). We proceed as follows:
The equations for the orbital ellipse of a rub element are:

AXU=AX‘;cos‘I’+ AX:’)sin‘II (60)

—-— 8 f
AXH-AXLcoslI’+ AXy sinW 61)

where W =
Defining: AX?=\/(AXf)>2+(AX3>2

axz = fax, P - (axy

AXS

b =&m_1 2
v AXE
v

AXS

QH =tan"! -
AX';{

Equations 60 and 61 can then be written as:

AX =AX"'cos(‘I-'-—¢> (62)
v v v
AX =AX:;oos(‘P - CDH> 63)
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For the four intersection points of the orbital ellipse with the clearance
circle (whose radius €, = the dead band) (see figure 5-2) we can write:

2 2 _(. )2
(AXU) ¥ (AXH> _(eo) 64)
Plugging equations 62 and 63 into equation 64 we get:

(s) ot (v-,) s (-0, (5

Dividing through by Eg we get:

AXm AXm
(—u)2c032 (‘F—¢>+(-—£)2cosz (‘I‘—<D )=1
€ v € H

0

Using a trigometric identity this becomes:

(AXZ‘>2(1 +msl2<‘¥—¢u>])+ (AXI”;>2(1 +ms[2(w—¢ﬂ>]>=l

€ 2 € 2

0
Rearranging:

m m
(o« (2
2 Eo EO 2 60 2 0

Using another trigometric identity this becomes:

1 AXZ‘ 2 AX; 2 1 Axct)n 2 . .
- — ) | — + =\ = )" | cos 2W cos 2P +sin 2¥ sin 2
2 G G 2 E v v

0 0 0
E(ﬁ)“’ in 2W sin 2@ >'=1
‘*‘2 ¢, cos 2% cos 2@, + sin 2W sin 2@,
Rearranging:
m m
1 AXu 2 AXH 2
=W — ) cos2® +{ — |° cos2®  |cos 2W
2 €, v € H
m
1A%, AXH Y2 . L[/ AKX,
+=l{ = ) sin2® +| == ) sin2®, |sin 2¥ =1 -~ —) +
€, v € 21N €,
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This can be rewritten:

Acos2W + Bsin2¥ =C

where

A=

Defining:
1B
A

Equation 65 can be rewritten:

va? + B2 cos(Z‘P—°t>= C

« = {an

from which we get:

C
-1
2¥Y — x = cos ( )
;A2+B2
oS e —
Va? + B?

- - 66)
¥ 2 * 2 (
Defining:
0 co_l( ¢ )
= oS —_—
VA% + B?
where:

0<6 =n




We can then 1list four possible values of the function:

=)
oS e am——
A% + B?

as follows:

2] x

Y ==+ =

12 2
5] «
Y=o~ =+ =
2 2 2
5] 3
W3=n+5+5
0 [
‘P4=2n—£+'2-

The preceding equations give the ¥ angles for the four intersection points
of the orbital ellipse with clearance circle. As discussed in section 5.3.4,
we numerically integrate over one of the two rub areas, then double the

result. However, given the four intersection points, there is the possibility
that the rub areas are between points 1 and 2 and between points 3 and 4, and
there is also the possibility that the rub areas are between points 2 and 3 and
between points 4 and 1 (see figure 5-3). To find which of these two
possibilities apply, we first calculate the w angle at point 1.5, which is
half way between points 1 and 2:

‘P1+‘P2

V5= 5 =nt

N R
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Possible Orbital Ellipses

through intersection points

1, 2, 3, and 4

Clearance
Circle

> ax,

Figure 5-3. Orbital Ellipse Possibilities For

An Intermittent Rub
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We then calculate the radius at point 1.5 as follows:

Rig=Yon P (o,

. ‘ 2 .
R = \/(Axf, cos W, s +AX sin'¥, g ) + (AX‘;{ cos ¥ s +AX sin W o )2

If the radius at point 1.5 is greater than the dead band, then the rub areas
must be between points 1 and 2 and between points 3 and 4. If this is the
case, we numerically integrate between points:

lI’A=‘I‘1 and ‘PB=‘F2

as detailed in section 5.3.4.

However, if the radius at point 1.5 is less than the dead band, then the rub
areas must be between points 2 and 3 and between points 4 and 1. If this is
the case, we numerically integrate between points:

Y =W and B=‘V3

as detailed in section 5.3.4.
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5.5 Equations For the Maximum and Minimum Rub Element Harmonically
Averaged Force Magnitude

As noted in section 5.2, the rub element physical forces are expressed as:

— C 3 {
Pe'v’l—Pe,u'lcosmt+Pe’v’Ismcot
< 3 sin wt
Pc,H _Pe H, Icosmt+Pe’H‘I
C C 3 8 « .
where Pe ol P““, Pyt and P”” are found using harmonic

averaging.

We next define:

= e e (p,
‘/(Pce H, 1> ( Py, H,I>2

eHI—
3
1 8ol
d>v = tan "
PC,u,I
8
-1 Pe ,H »I
$  =tan
H PC
¢ H,I
b = (Du - 'PH
Fmax = Maximum rub element harmonically averaged force magnitude
Fmin = Minimum rub element harmonically averaged force magnitude
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It can be shown (though the derivation is lengthy, so we skip it here):

F = /(P? I>2 ( ”“) 1\/(7”‘ ) (””> +2<P:U‘1>2(P:H’I)2cos2¢

max 2

J e
N AN ewt1) 1 ff . n _
Foin =\ 2 -2 Peu) S UAPTIIRE: G Penr) cos2 @

Note that these equations are similar in form to the equations for the maximum
and minimum relative displacement magnitudes given in section 4.5.3.
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6.0 Generalized Displacements and Generalized Velocities

6.1 Generalized Displacements

The generalized displacements can be written in terms of the cos and sin
components as follows:

Z, =Zjcosat+Z sinwt | (67)
where:
Z, = generalized displacement for global mode k
Z: = amplitude of the cos component of the generalized displacement
mode k
ZZ = amplitude of the sin component of the generalized displacement

mode k

w = steady state forcing frequency

¢

time

The amplitude of the cos and sin component of the generalized displacement for
each mode is calculated using the method outlined in section 4.5.1. The
generalized displacements can also be expressed in terms of the magnitude and
phase angle as follows:

— m -
Zk ..Z,¢ cos(n)t Ck>

where:

~ »
Ck = tan'l(—::->
Z,
For each forcing frequency, the generalized displacements are found as outlined
above and in section 4.5.1. The generalized displacements are then used to
calculate the physical quantities (physical displacements, physical velocities,
physical connecting element forces, etc.) as outlined in section 7 which
follows. It is normally the physical quantities that the user is interested in
rather than the generalized values. For this reason, printout of the
generalized displacements is omitted if the user requests the short or the
standard form of the output (see printout option IOUT on the type A input
sheet). Printout of the generalized displacements (cos components, sin
components, magnitudes, and phase angles) is included if the user requests the
long form of the printed output.
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6.2 Generalized Velocities

In a manner similar to that for the generalized displacements of the preceeding
section, the generalized velocities can be expressed in terms of the cos and sin
components as follows:

Zv, = ZV; coswt + ZV: sin wt

where:
ZV, = generalized velocity for mode k

By differentiating equation 67, we can express the amplitudes of the cos and sin
components of the generalized velocities in terms of the generalized
displacements found via the method of the preceeding section as follows:

o8
ZV';—ka

C
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7.0 Equations For the Physical Quantities

Once the generalized displacements and generalized velocities have been found,
as outlined in section 6, they are used to calculate the physical quantities.
The physical quantities are the last things calculated for each forced frequency
solution. The following sections detail how the physical quantities are
calculated.

7.1 Physical Displacements, Velocities, and Modal Forces at
the Points

The physical displacement can be written in terms of the cos and sin components
as follows:

X. =X coswt + X:.sinwt
ij ij i
where:
Xﬁ = physical displacement for point i in direction j

The amplitude of the cos and sin components of the physical displacement is
found by summing over the modes as follows:

n
— x C
ij - kzl q’z‘jk Zlc

s 8
Xij‘ kzl (p;'kzlz

where:

¢§k = displacement mode shape for point i, direction j, and mode k

¢
Zk

amplitude of the cos component of the generalized displacement for
mode k (see section 6.1)

ZZ = amplitude of the sin component of the generalized displacement for
mode k (see section 6.1)

Similarly, the physical velocity can be written in terms of the cos and sin
components as follows:

V.. =V coswt+ V. sinwt
gy oo ij
where:

VU = physical velocity for point i in direction j
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The amplitude of the cos and sin components of the physical velocity is found by
summing over the modes as follows:

g

n .
'] x ']
Vij kzl (bijk ZVk

where:

amplitude of the cos component of the generalized velocity for mode k
(see section 6.2)

Zv,

ZVy = amplitude of the sin component of the generalized velocity for mode k
(see section 6.2)

Similarly, the modal force can be written in terms of the cos and sin components
as follows:

F.. =F°¢ coswt + F° sinwt
g i
where:
FU = modal force for point i in direction j

The amplitude of the cos and sin components of the modal force is found by
summing over the modes as follows:

F§’= 25 ¢2kzi
k=1
n
-— 8
F:j_ Z ijkzlz

where:

¢2k = force mode shape for point i, direction j, and mode k

Note that the physical displacements and physical velocities are calculated
using the displacement mode shapes, while the modal forces are calculated using
the force mode shapes. For the flexible vertical and horizontal plane
subsystems, the displacement mode shapes are the translation and slope, while
the force mode shapes are the shear and moment as entered on input sheet C-3.
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So far we have expressed the physical displacements, physical velocities, and
modal forces in terms of the cos and sin components. These quantities can also
be expressed in terms of the magnitude and phase angle as follows:

— ym _*

Xij"Xij cos(mt cij)

V..=V'.'.'cos<mt—(‘.’.)
ij ij

i,

F =F'.'.'oos<o)t- Cf)

tj Yy &)
where:

gl « (x)

i=m"0i)
4 n o

ij
ij
()
¢ =tan"! (-‘:;)

l] Vc
F .—jfpc )2
ij ij

§=ent ()
ij

Usually, the user is primarily interested in the magnitudes of the quantities.
For this reason, it is the magnitudes and phase angles of these quantities,
rather than the cos and sin components, that are printed out and written to the
output plot file. An exception to this is that the cos and sin components are
also printed out if the long form of the printed output is requested via input
variable IOUT on type A input sheet.
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7.2 Physical Connecting and Gvyroscopic Element Forces

TETRA 2 has capability for six different types of physical connecting elements:
type 1 (general spring-damper elements), type 2 (link elements), type 3 (rub
elements), type 4 (engine support-links elements), type 5 (uncoupled point
spring-damper elements), and type 6 (squeeze film damper elements). The first
five types can be used for either transient or steady state analyses, while the
type 6 (squeeze film damper elements) can be used only for transient analyses.
In addition, TETRA 2 accounts for gyroscopic forces acting on a rotor by means
of a gyroscopic element, which can be used for either transient or steady state
analyses. Although not a physical connecting element, the gyroscopic element is
classified as an element because gyroscopic forces are calculated very similarly
to the damping forces of the physical connecting elements. This section
concerns itself only with the element forces for steady state analysis runs,
since the element forces for transient analysis runs were covered in reference 1
and reference 3.

The physical connecting or gyroscopic element force can be written in terms of
the cos and sin components as follows:

FUk = force that physical connecting or gyroscopic element k exerts on
the engine components or ground for point i and direction j

= amplitude of the cos component of the force that physical

ijk ’ X X
connecting or gyroscopic element k exerts on the engine component
or ground for point i and direction j

k= amplitude of the sin component of the force that physical

connecting or gyroscopic element k exerts on the engine component
or ground for point i and direction j

The amplitude of the cos and sin components of the force that the element exerts
on the engine component or ground is calculated very differently for the
nonlinear type 3 physical connecting element (rub element) than for the other
elements. For the rub elements, these are calculated using harmonic averaging
(except when the dead band has not been exceeded so that the rub ejﬁpent forces
are 0) as detailed in section 5. For joint I of the rub element, F;; in the
above equation is the same as the variables Py, (for the vertical direction)
and Pz" (for the horizontal direction) from section 5. Likewise, Ff* is the
same as Py (for the vertical direction) and P,y (for the horizonta
direction) from section 5. The forces at joint J of the rub element are simply
the negative of the forces at joint I of the rub element.

For the other elements, on the other hand, the Ffjb and sz are calculated

using the physical displacements and/or physical velocities at the joints of the
element (the x‘:J x; ij and VZ' that were found in section 7.1) and data
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pertaining to the stiffness and damping of the element. Just what stiffness and
damping data is used along with the physical displacements and/or physical
velocities to calculate the element forces depends on the type of physical
connecting element and the user input options which were chosen. Input
stiffness matrix definition or input stiffness coefficients are used obtain the
stiffness of the element. The damping of the element may be obtained by input
damping matrix definition, input damping coefficients, or may be calculated
using an input Q-factor and a frequency. The frequency used along with the
input Q-factor to calculate the damping may either be input (non-structural
damping), or the steady state forcing frequency or independent rotor speed may
be used for this frequency (structural damping). In the case of the gyroscopic
element, the polar moment of inertia and the rotor speed are used to calculate
the damping. See reference 1 for more details about the physical connecting and
gyroscopic elements.

The physical connecting and gyroscopic element forces may also be expressed in
terms of magnitude and phase angle as follows:

F —F"' cos(oot Cuk>

where: 2
z]k uk U"
jk
L. =tan ( Y )
ik Fe

ijk
Usually, the user is interested primarily in the magnitude of the element
forces. For this reason, it is the magnitudes and phase angles of these
quantities, rather than the cos and sin components, that are printed out and
written to the output plot file. An exception to this is that the cos and sin
components are also printed out if the long form of the printed output is
requested via input variable IOUT on the type A input sheet.
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7.3 Flexible Bladed Disk Displacements and Stresses

For each flexible bladed disk, two modes are considered. These modes are the
horizontal nodal diameter mode (referred to as mode P) and the vertical nodal
diameter mode (referred to as mode Q). In a given TETRA model, there can be a
maximum of two flexible bladed disks, and these flexible bladed disks must be
located on the same rotor. See reference 2 for a detailed discussion of the two
nodal diameter modes and flexible bladed disks in general.

The equations for the displacements and stresses at a local point on flexible
bladed disk number 1 or 2 (from reference 2 page 11 and 21) are:

U=-I-/'-(Psin‘I’+QcosW) (68)
V=V(Psinw+Qoosw> (69)
8, = éT(Psin‘P + Qcos‘l‘) (70)
—_ (71)
S =S2 (Psin‘P+Qcos‘P)
_ (72)
S,= 8, (Psin‘!’ + Qws‘l’)
where:

U = tangential displacement of the Tocal point on the flexible bladed disk

Q|
1

input static (zero speed) mode shape for tangential translation of the
local point on the flexible bladed disk

V = axial displacement of the local point on the flexible bladed disk

V = input static (zero speed) mode shape for axial translation of the
local point on the flexible bladed disk

S, = first stress component of the local point on the flexible bladed disk

S, = input modal stress for the first stress component of the local point
on the flexible bladed disk

S, = second stress component of the local point on the flexible bladed
disk

S, - = input modal stress for the second stress component of the local point
on the flexible bladed disk

S; = third stress component of the local point on the flexible bladed disk

S, = input modal stress for the third stress component of the local point
on the flexible bladed disk



P = generalized displacement for the horizontal nodal diameter mode of the
flexible bladed disk

Q@ = generalized displacement for the vertical nodal diameter mode of the
flexible bladed disk

¥ = polar angle of the local point on the flexible bladed

disk

The polar angle of the local point on the flexible bladed disk is
found from:

Y=Q+ 9

where:

Q

flexible bladed disk rotor speed

¢ time

input polar angle of the local point on the flexible bladed disk
relative to the flexible bladed disk reference diameter (see input
sheet C-15)

Also, for a steady state analysis run we can express the generalized

displacement of the P and Q modes in terms of magnitude and phase angle as
follows:

1’==P"‘am'(wt-6p>
Q=Q™ cos(wt—lq>

where the magnitude and phase angle for the P and Q modes are calculated just
like those of the other generalized displacements (see section 6.1).

Plugging the expressions for ¥, P, and Q into equations 68 through 72, we arrive

at fairly complex expressions for the displacements and stresses at a local
point on a flexible bladed disk:

U=U [P"'cos(mt - Cp>sin(Qt + <D> + Q™ cos (wt - (q)cos(ﬂt + Q) ]

V=V P'"cos(o)t— Cp)sin(9t+ _¢> + Q™ cos (mt— ¢ )cos(Qt + d>> ]

S, = S—1 P"'cos(oat - Cp>sin(Qt + 4)) + Q™ cos (wt - Cq) cos(Qt + Q) ]
S, = S—2 .P"‘cos(o)t - (P>sin(§2t + (D> + Q™ cos (wt - Cq) cos(Qt + (D) ]
S, = S—3 P’"cos(mt - Zp)sin Qt + Q) + Q™ cos (o)t- Cq) cos(Qt + <D> ]



We can define the magnitude portions of these expressions as
follows:

ur=up"
Ur=UQm
V=V P"
vr=V QT
Sh =S, P"
Sp=5Q"
Sp =8, P"
S5, = 5, Q"
Sp= 5, P"
sp=15,Q"

It is these magnitudes that are printed out and written onto the plot file for a
steady state analysis run.

Substituting the magnitude quantities into the expressions for the displacements
and stresses at a local point on a flexible bladed disk we get:

U=U (mt—{p)sm(ﬂt+ ¢>+U;"cos(o)t—(p>cos(§2t+¢)

COS

Wt — Cp)sm (Qt + CD) + V:'cos(mt - {p)cox(Qt + ¢>
(mt C)cos(Qt+€D>
2 =8 cos(wt—(p)sm(ﬂt+¢> cos(mt—() s(Qt+<b)

(
s(mt Cp) sm(Qt + ¢> + S"' cos

S, = S;"pcos(o)t - (p) sin(Qt + d>) + S;‘qcos(mt - Zp) cos(Qt + <D>
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8.0 CONCLUDING REMARKS FOR VOLUME 1.

This volume documents the methodology for the steady state solution
incorporated in TETRA 2. It is written to permit a straightforward
understanding of its developments from the essentials of the theory, to the
actual applications to engine dynamics and to the programmed working
equations. These also include the treatment of nonlinear elements and
the case of the intermittent rubs.

It is intended that this volume should be a self contained description
of the entire theory, as well as an accompaniment to the second volume.

Volume 2 is the user's manual which contains both program input/output
description and the trial or sample illustrative cases. The latter is a
documentation of the progressive steps that were taken to debug and check
the program, from simple degenerate cases to the twin spool engine model.
This volume is also intended to be a self contained user's manual. However,
to those interested in cross-checking program with theory, Volume 1 will
be necessary.
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